
Technical Digest
Hello, and thanks for coming! This is the technical digest, as the name would suggest, for
people who want a deeper look into the systems at play in the game. This assumes that
you’ve already read the abbreviated version of this directly above where you found it, so
there won’t be any duplicate information here! No, siree!

Let’s get right into it!

Container Rebrand
First things first, the new class of containers. Monsters are now always containers, so
that’s a cool one. It’s just because at some point or another, you’re going to need to access
an inventory from them for one thing or another, and it’s just easier to roll the functionality
together. It’s a direct inheritance, so monsters are containers but containers are no longer
monsters. This was mainly to reduce the operating weight of the game and to support in the
setup of the loot tables, which are now fully implemented.

Loot Tables
I didn’t touch on this in the devlog at all because it’s entirely technical, but I finished setting
up the main loot table tree for standard chests. The function to handle populating chests
takes in a loot table, runs a weighted random based on that loot table, and looks up
whatever item is needed. In TfQuest, a big change is being able to have multiple items in
each chest, so watch out for that too.

Inheritance System
This is the big time sink for this week and also the most complex system. Let me give an
example of some of the content that I’ve been working on.

Here’s the default traits list for monsters:

You can see a list of defined variables and a modifier afterwards. In this case, the stat block
will set the values of all of these variables to a specific number. These are starting points
that are used as the foundation of the other modifier blocks. Now let me show you another
version of the same part for an elf:

This is a good showcase of most of the different modifiers you can use. In this case, you’d
define an elf to be [Monster, Elf]. The script would start at monster, set all of the values, and
then make the modifications listed in order to get the final result. Of course, this can get
much more complicated, but it’s best to keep examples simple.

This is also used for status effects as well as direct 1:1 substitutions like demonstrated
previously. You can have a potion item that becomes a status effect and is applied to
someone on use, for instance:

It’s an incredibly powerful system.

For a quick rundown of the modifiers so far (I’m of course down to add more if anyone can
think of useful ones):

- Set: Sets the value to a chose number
- Add: Adds a number to the current value
- Mult: Multiplies by a chosen value
- Final: Overrides all other inputs to return this value instead

In terms of content generation, I hope for TfQuest to be much more in-depth and detailed
than TQ. The engine limitation harnesses are off, so I’m writing in a lot to try and add depth
to the characters, transformations, and world overall. Some of the behaviours are still going
to have to be written explicitly for each monster, but this will allow for a lot of ‘easy’ depth
by adding layers.

The content I’m looking at first are all of the necessary layers to make the dungeon, starting
with the monsters. I’m hoping to go in order by region and get all of the puzzle pieces I need
one-by-one. Hopefully by getting the difficult things out of the way, I’ll have a lot of
foundation by the time that I move to higher regions!

As always, let me know if you have any questions about anything! I’m down to talk shop,
whether for clarifications, new ideas, or anything else. Thanks for reading! I really
appreciate your support.

